organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Frieder W. Lichtenthaler,^a Hans J. Lindner,^a* Kahee Fujita,^b De-Qi Yuan^b and Yong Ren^b

^aInstitut für Organische Chemie, Darmstadt University of Technology, Petersenstraße 22, D-64287 Darmstadt, Germany, and ^bFaculty of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki 852-8521, Japan

Correspondence e-mail: lindner@oc1.oc.chemie.tu-darmstadt.de

Key indicators

Single-crystal X-ray study T = 173 KMean σ (C–C) = 0.014 Å Disorder in main residue R factor = 0.096 wR factor = 0.255 Data-to-parameter ratio = 10.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography

Printed in Great Britain - all rights reserved

Guest differentiation in a 6¹,6¹¹-disubstituted **β-cyclodextrin**

The structure of 6^{I} , 6^{II} -dideoxy- 6^{I} -(*p*-methylbenzylthio)- 6^{II} phenylthio- β -cyclodextrin tetradecahydrate, C₅₆H₈₂O₃₃S₂·-14H₂O, has been determined. Of the two substituents, only the phenylthio moiety is included in the cavity of adjacent disubstituted β -cyclodextrin (β -CD) units, forming a helical polymer.

Received 30 January 2003 Accepted 25 February 2003 Online 7 March 2003

Comment

Compared to the abundance of cyclodextrin (CD) inclusion compounds which have been determined by X-ray crystallography (Saenger, 1984; Harata, 1996), relatively few structures of substituted CD's other than O-methylated derivatives have been elucidated (Harata, 1998). In the case of β -CD's monosubstituted at the primary carbon (C-6), the tethered substituent of one β -CD unit, such as *tert*-butylthio (Hirotsu *et* al., 1982; Fujita et al., 1985), phenylthio and phenylsulfinyl (Kamitori et al., 1987), azido (Charpin et al., 1990), 2hydroxypropyloxy (Harata et al., 1991) and (6-aminohexyl)amino (Mentzafos et al., 1996), is included in the cavity of another substituted β -CD. This simultaneous functioning of a molecule as host and guest provides unique three-dimensional self-assemblies, most notably helical polymers (Hirotsu et al., 1982; Kamitori et al., 1987). We report here the X-ray crystallographic study of 6^I,6^{II}-dideoxy-6^I-(*p*-methylbenzylthio)- 6^{II} -phenylthio- β -cyclodextrin, (I), a β -CD derivative carrying two different substituents at the primary C-6 of vicinal glucopyranosyl residues, with the result that exclusively the phenylthio moiety is intermolecularly included into the cavity of another unit, making it a unique case of guest differentiation.

The molecular structure of (I) is shown in Fig. 1. The β -CD macrocycle has an approximate sevenfold axis and a round shape, with all glucose residues in the ${}^{4}C_{1}$ chair conformation.

Figure 1 A view of (I) from the secondary OH group side, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A packing diagram of (I), showing the guest-host stack. The H atoms and the solvent water molecules have been omitted and the view is along the b axis.

The secondary hydroxyl groups between neighbouring glucose residues form intramolecular hydrogen bonds, which may maintain the round shape of the cyclodextrin ring; the seven glycosidic O4 atoms are coplanar within 0.11 Å. The heptagon composed of seven O4 atoms is approximately regular, since the side lengths of the heptagon are in the range 4.33 (7)–4.46 (7) Å and the O–O–O angles vary from 124.8 (2) to 133.5 (2)°. The glucose residues are inclined to the perpendicular axis of the O4 atoms plane to make the hydrophobic cavity smaller at the primary hydroxyl site. The packing of the

disubstituted β -CD macrocycles is unique in that, of the two residues that may be included intermolecularly into the cavity of another molecule, exclusively the phenylthio group is selected for penetrating the cavity from the wider secondary hydroxyl group side (Fig. 2), thereby providing a most interesting case of guest differentiation by a β -CD cavity. The methylbenzylthio moiety, on the other hand, is partially spread over the top of its own primary hydroxyl group side, thus partially capping the narrower opening of the β -CD macrocycle, making this supramolecular self-assembly a unique

Figure 3

A packing diagram, viewed along the a axis, showing the hydrophobic guest-host stacks surrounded by OH groups and water molecules.

example in crystal engineering. The guest-host stacks surrounded by crystal water molecules run parallel to the a axis. As seen in Fig. 3 the hydrophobic cores are clearly separated from the hydrophilic surface and the crystal water molecules.

Experimental

The title compound was synthesized as described elsewhere (Fujita, 2003). Colourless crystals were obtained from a water-acetonitrile (4:1) solution.

Crystal data

$C_{56}H_{82}O_{33}S_2 \cdot 14H_2O$	Mo $K\alpha$ radiation
$M_r = 1599.56$	Cell parameters from 34217
Orthorhombic, $P2_12_12_1$	reflections
a = 14.4635 (7) Å	$\theta = 1.6-24.7^{\circ}$
b = 17.3370 (10) Å	$\mu = 0.18 \text{ mm}^{-1}$
c = 29.388 (2) Å	T = 173 (2) K
$V = 7369.1 (7) \text{ Å}^3$	Prism, colourless
Z = 4	$0.30 \times 0.20 \times 0.20$ mm
$D_x = 1.442 \text{ Mg m}^{-3}$	
Data collection	
Stoe IPDS-2 diffractometer	$R_{\rm int} = 0.118$
φ scans	$\theta_{\rm max} = 28.3^{\circ}$
34217 measured reflections	$h = -18 \rightarrow 19$

φ scans	$\theta_{\rm max} = 28.3^{\circ}$
34217 measured reflections	$h=-18\rightarrow 19$
9891 independent reflections	$k=-23\rightarrow 20$
4958 reflections with $I > 2\sigma(I)$	$l=-39\rightarrow 38$

Refinement

ł

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.1146P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.096$	+ 1.2217P]
$vR(F^2) = 0.255$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} = 0.003$
891 reflections	$\Delta \rho_{\rm max} = 0.71 \text{ e } \text{\AA}^{-3}$
41 parameters	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$
I-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.0116 (9)

Table 1

Hydrogen-bonding geometry (Å, °).

D-H···A	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$			
$O2A - H2OA \cdots O3G$	0.84	2.06	2.89(1)	166			
$O3A - H3OA \cdots O2B$	0.84	1.95	2.76 (1)	162			
$O2B - H2OB \cdots O13W^{i}$	0.84	2.16	2.87 (2)	143			
$O3B - H3OB \cdot \cdot \cdot S6A^{ii}$	0.84	2.69	3.431 (7)	149			
$\Omega^2 C = H^2 \Omega C \cdots \Omega^3 B$	0.84	2.16	2.92(1)	150			
$O3C - H3OC \cdots O6G^{ii}$	0.84	2.17	2,798 (9)	132			
$O6C - H6OC \cdots O10W$	0.84	2.15	2.82(1)	137			
$02D = H2OD \cdots O3C$	0.84	2.18	2.82(1)	139			
O3D = H3OD + O2E	0.84	1.91	2.07(1) 2.72(1)	159			
$O6D - H6OD \cdots O2W^{ii}$	0.84	2 31	2.67(1)	106			
$\Omega^2 E = H^2 \Omega E \dots \Omega^3 E$	0.84	2.31	2.07(1) 2.85(1)	113			
$O_{2E} = H_{2OE} + O_{3E}$	0.84	2.42	2.03(1) 2.72(1)	141			
O5E - H5OE - O2I	0.84	1.83	2.72(1) 2.65(2)	141			
O2E H2OE O8W	0.84	1.80	2.03(2) 2.57(2)	152			
$O_{2F} = H_2O_{F} + O_2G$	0.84	1.00	2.37(2) 2.79(1)	152			
$O_{5F} = H_{5OF} = O_{2C}^{iii}$	0.84	1.90	2.79(1) 2.73(1)	109			
O_{0}^{i} H_{0}^{i} O_{0}^{i}	0.84	1.95	2.75(1) 3.24(1)	139			
$O_2G = H_2OG \cdots O_3C$	0.84	2.37	3.24(1)	137			
$O_{5}O_{-}H_{5}O_{5}O_{-}O_{0}O_{0}O_{-}O_{0}O_{-}O_{0}O_{0}O_{-}O_{0}O_{0}O_{-}O_{0}O_{0}O_{0}O_{0}O_{0}O_{0}O_{0}O_{0$	0.84	2.20	2.73(1)	125			
	0.64	1.96	2.77(1)	138			
$OIW = HIW \cdots OSF$	0.85	2.20	3.10 (3)	1/3			
$O1W - H2W \cdots O2D$	0.84	2.30	3.10(3)	160			
$O_2W = H_3W \cdots O_3A^{H_2}$	0.84	1.80	2.64 (1)	154			
$O2W - H4W \cdots O10W^{m}$	0.84	2.11	2.94 (1)	171			
$O_3W - H_5W \cdots O_6F^{i}$	0.84	1.99	2.76(1)	153			
$O3W - H6W \cdots O6E^{4}$	0.84	2.43	3.24 (2)	161			
$O4W - H/W \cdots O3W$	0.84	1.97	2.78(1)	161			
$O4W - H8W \cdots O5W$	0.84	1.91	2.73 (2)	167			
$O5W - H9W \cdots O5D^{\text{vir}}$	0.84	2.32	3.09(1)	151			
$O5W - H9W \cdots O6D^{vn}$	0.84	2.40	3.05 (2)	135			
$O5W-H10W\cdots O3E^{i}$	0.84	2.10	2.81 (2)	143			
$O6W - H11W \cdots O3D^{ix}$	0.84	2.31	2.84 (2)	121			
$O6W-H12W\cdots O2A^{v_1}$	0.84	2.20	2.89 (2)	139			
$O7W-H13W\cdots O2G^{x}$	0.84	1.88	2.69 (1)	161			
$O7W - H14W \cdots O11W$	0.84	2.25	2.79 (3)	123			
$O8W-H15W\cdots O3C^{\vee}$	0.85	2.14	2.90 (2)	149			
$O8W-H16W\cdots O1W$	0.84	2.18	2.64 (3)	114			
$O9W - H17W \cdots O1W^{x}$	0.85	2.18	3.03 (4)	178			
$O9W - H18W \cdots O11W^{x}$	0.85	2.17	2.64 (4)	115			
$O10W - H19W \cdot \cdot \cdot O6C$	0.84	2.30	2.82 (1)	121			
$O10W - H20W \cdot \cdot \cdot O3W^{x_1}$	0.84	1.95	2.76 (1)	159			
$O11W - H21W \cdot \cdot \cdot O7W$	0.86	2.05	2.79 (3)	145			
$O11W - H22W \cdot \cdot \cdot O9W^{xii}$	0.85	1.97	2.64 (4)	134			
$O12W - H23W \cdot \cdot \cdot O7W$	0.84	2.15	2.85 (4)	141			
$O12W - H24W \cdot \cdot \cdot O1W^{x}$	0.84	1.99	2.58 (3)	126			
$O13W - H25W \cdot \cdot \cdot O12W$	0.84	2.54	3.02 (4)	117			
$O13W - H25W \cdots O11W$	0.84	2.62	3.26 (4)	134			
$O13W - H26W \cdot \cdot \cdot O5W^{ii}$	0.83	1.86	2.67 (4)	163			
$O14W - H27W \cdot \cdot \cdot O3F^{x}$	0.86	2.25	2.98 (4)	142			
$O14W - H28W \cdot \cdot \cdot O2D^{xiii}$	0.85	1.84	2.61 (4)	151			
Symmetry codes: (i) $x - \frac{1}{2}, -\frac{1}{2} - y, -z$; (ii) $\frac{1}{2} + x, -\frac{1}{2} - y, -z$; (iii) $-x, \frac{1}{2} + y, \frac{1}{2} - z$; (iv) $-\frac{1}{2} - x, -1 - y, \frac{1}{2} + z$; (v) $\frac{1}{2} - x, -y, \frac{1}{2} + z$; (vi) $x - \frac{1}{2}, -\frac{3}{2} - y, -z$; (vii) $x, y - 1, z$; (viii)							

 $\begin{array}{c} \frac{1}{2} - x, -1 - y, z - \frac{1}{2}; (ix) & x - 1, y - 1, z; (ix) & x - 2, \frac{1}{2} - 2, (ix) & x + y, \frac{1}{2} - 2; (ix) & \frac{1}{2} - x, \frac{1}{2} - y, -z. \end{array}$

H atoms were treated as riding atoms. The positions of the H atoms of the water molecules were calculated with the program *HYDROGEN* (Nardelli, 1999) and included in the refinement with constrained geometry. A disorder of the phenyl ring was resolved by two sets of atomic coordinates and isotropic refinement.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and HYDROGEN (Nardelli, 1999); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97 and IUCr SHELXL97 template.

We thank Professor M. Nardelli, University of Parma, for providing H-atom positions for the water molecules, calculated with the program *HYDROGEN*. We also thank T. Fässler, E.-Zintl-Institut, TU Darmstadt, for diffractometer time, S. Foro for technical assistance and the Fonds der Chemischen Industrie for partial funding.

References

Charpin, P., Nicolis, I., de Rango, C. & Coleman, A. W. (1990). *Acta Cryst.* A46, C-169–C-174.

- Fujita, K., Matsunaga, A., Imoto, T., Hirotsu, K., Kamitori, S. & Higuchi, T. (1985). J. Am. Chem. Soc. 107, 1790–1791.
- Fujita, K. (2003). In preparation.
- Harata, K. (1996). Comprehensive Supramolecular Chemistry, Vol. 3, Cyclodextrins edited by J. L. Atwood, J. E. Davies and D. D. Nicol, pp. 279–304. Oxford: Pergamon Press.
- Harata, K. (1998). Chem. Rev. 92, 1820-1822.
- Harata, K., Trinadha Rao, C., Pitha, J., Fukunaga, K. & Uekama, K. (1991). *Carbohydr. Res.* **222**, 37–45.
- Hirotsu, K., Higuchi, T., Fujita, K., Ueda, T., Shinoda, A., Imoto, T. & Tabushi, I. (1982). J. Org. Chem. 47, 1143–1144.
- Kamitori, S., Hirotsu, K., Higuchi, T., Fujita, K., Yamamura, H., Imoto, T. & Tabushi, I. (1987). J. Chem. Soc. Perkin Trans. pp. 7–17.
- Mentzafos, D., Terzis, A., Coleman, A. W. & de Rango, C. (1996). *Carbohydr. Res.* 282, 125–135.
- Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
- Saenger, W. (1984). Inclusion Compounds, Vol. 2, edited by J. L. Atwood, K. E. Davies and D. D. MacNicol, pp. 231–259. London: Academic Press.
- Sheldrick, G. M. (1997). *SHELXS*97 and *SHELXL*97. University of Göttingen, Germany.
- Spek, A. L. (1999). *PLATON*. Version of October 1999. Utrecht University, The Netherlands.
- Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.