Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Frieder W. Lichtenthaler, ${ }^{\text {a }}$
Hans J. Lindner, ${ }^{\text {a }}$ Kahee Fujita, ${ }^{\text {b }}$ De-Qi Yuan ${ }^{\text {b }}$ and Yong Ren ${ }^{\text {b }}$
${ }^{\text {a }}$ Institut für Organische Chemie, Darmstadt University of Technology, Petersenstraße 22, D-64287 Darmstadt, Germany, and ${ }^{\text {b }}$ Faculty of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki 852-8521, Japan

Correspondence e-mail:
lindner@oc1.oc.chemie.tu-darmstadt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
Disorder in main residue
R factor $=0.096$
$w R$ factor $=0.255$
Data-to-parameter ratio $=10.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Guest differentiation in a $6^{1}, 6^{11}$-disubstituted β-cyclodextrin

The structure of $6^{\mathrm{I}}, 6^{\mathrm{II}}$-dideoxy- 6^{I}-(p-methylbenzylthio) -6^{II} -phenylthio- β-cyclodextrin tetradecahydrate, $\mathrm{C}_{56} \mathrm{H}_{82} \mathrm{O}_{33} \mathrm{~S}_{2}$.$14 \mathrm{H}_{2} \mathrm{O}$, has been determined. Of the two substituents, only the phenylthio moiety is included in the cavity of adjacent disubstituted β-cyclodextrin (β-CD) units, forming a helical polymer.

Comment

Compared to the abundance of cyclodextrin (CD) inclusion compounds which have been determined by X-ray crystallography (Saenger, 1984; Harata, 1996), relatively few structures of substituted CD's other than O-methylated derivatives have been elucidated (Harata, 1998). In the case of β-CD's monosubstituted at the primary carbon (C-6), the tethered substituent of one β-CD unit, such as tert-butylthio (Hirotsu et al., 1982; Fujita et al., 1985), phenylthio and phenylsulfinyl (Kamitori et al., 1987), azido (Charpin et al., 1990), 2hydroxypropyloxy (Harata et al., 1991) and (6-aminohexyl)amino (Mentzafos et al., 1996), is included in the cavity of another substituted β-CD. This simultaneous functioning of a molecule as host and guest provides unique three-dimensional self-assemblies, most notably helical polymers (Hirotsu et al., 1982; Kamitori et al., 1987). We report here the X-ray crystallographic study of $6^{\mathrm{I}}, 6^{\mathrm{II}}$-dideoxy- 6^{I}-(p-methylbenzylthio)$6^{\text {II }}$-phenylthio- β-cyclodextrin, (I), a β-CD derivative carrying two different substituents at the primary C-6 of vicinal glucopyranosyl residues, with the result that exclusively the phenylthio moiety is intermolecularly included into the cavity of another unit, making it a unique case of guest differentiation.

The molecular structure of (I) is shown in Fig. 1. The β-CD macrocycle has an approximate sevenfold axis and a round shape, with all glucose residues in the ${ }^{4} C_{1}$ chair conformation.

Received 30 January 2003
Accepted 25 February 2003
Online 7 March 2003

Figure 1

A view of (I) from the secondary OH group side, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A packing diagram of (I), showing the guest-host stack. The H atoms and the solvent water molecules have been omitted and the view is along the b axis.

The secondary hydroxyl groups between neighbouring glucose residues form intramolecular hydrogen bonds, which may maintain the round shape of the cyclodextrin ring; the seven glycosidic O 4 atoms are coplanar within $0.11 \AA$. The heptagon composed of seven O 4 atoms is approximately regular, since the side lengths of the heptagon are in the range 4.33 (7)4.46 (7) \AA and the $\mathrm{O}-\mathrm{O}-\mathrm{O}$ angles vary from 124.8 (2) to $133.5(2)^{\circ}$. The glucose residues are inclined to the perpendicular axis of the O4 atoms plane to make the hydrophobic cavity smaller at the primary hydroxyl site. The packing of the
disubstituted β-CD macrocycles is unique in that, of the two residues that may be included intermolecularly into the cavity of another molecule, exclusively the phenylthio group is selected for penetrating the cavity from the wider secondary hydroxyl group side (Fig. 2), thereby providing a most interesting case of guest differentiation by a β-CD cavity. The methylbenzylthio moiety, on the other hand, is partially spread over the top of its own primary hydroxyl group side, thus partially capping the narrower opening of the β-CD macrocycle, making this supramolecular self-assembly a unique

Figure 3
A packing diagram, viewed along the a axis, showing the hydrophobic guest-host stacks surrounded by OH groups and water molecules.
example in crystal engineering. The guest-host stacks surrounded by crystal water molecules run parallel to the a axis. As seen in Fig. 3 the hydrophobic cores are clearly separated from the hydrophilic surface and the crystal water molecules.

Experimental

The title compound was synthesized as described elsewhere (Fujita, 2003). Colourless crystals were obtained from a water-acetonitrile (4:1) solution.

Crystal data

$\mathrm{C}_{56} \mathrm{H}_{82} \mathrm{O}_{33} \mathrm{~S}_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1599.56$
Orthorhombic, $P_{2} 2_{1} 2_{1}$
$a=14.4635(7) \AA$
$b=17.3370(10) \AA$
$c=29.388(2) \AA$
$V=7369.1(7) \AA^{3}$
$Z=4$
$D_{x}=1.442 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 34217
\quad reflections
$\theta=1.6-24.7^{\circ}$
$\mu=0.18 \mathrm{~mm}^{-1}$
$T=173(2) \mathrm{K}$
Prism, colourless
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Stoe IPDS-2 diffractometer	$R_{\text {int }}=0.118$
φ scans	$\theta_{\max }=28.3^{\circ}$
34217 measured reflections	$h=-18 \rightarrow 19$
9891 independent reflections	$k=-23 \rightarrow 20$
4958 reflections with $I>2 \sigma(I)$	$l=-39 \rightarrow 38$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.096$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1146 P)^{2}\right.$
$w R\left(F^{2}\right)=0.255$
$S=1.10$
9891 reflections
941 parameters
H -atom parameters constrained

$$
\begin{aligned}
& \quad+1.2217 P] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.71 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.46 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } \text { SHELXL97 } \\
& \text { Extinction coefficient: } 0.0116(9)
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 A-\mathrm{H} 2 \mathrm{O} A \cdots \mathrm{O} 3 G$	0.84	2.06	2.89 (1)	166
$\mathrm{O} 3 A-\mathrm{H} 3 \mathrm{O} A \cdots \mathrm{O} 2 B$	0.84	1.95	2.76 (1)	162
$\mathrm{O} 2 B-\mathrm{H} 2 \mathrm{O} B \cdots \mathrm{O} 13 W^{\text {i }}$	0.84	2.16	2.87 (2)	143
$\mathrm{O} 3 B-\mathrm{H} 3 \mathrm{O} B \cdots \mathrm{~S} 6 A^{\text {ii }}$	0.84	2.69	3.431 (7)	149
$\mathrm{O} 2 C-\mathrm{H} 2 \mathrm{O} C \cdots \mathrm{O} 3 B$	0.84	2.16	2.92 (1)	150
$\mathrm{O} 3 C-\mathrm{H} 3 \mathrm{OC} \cdots \cdots \mathrm{O}^{\text {ii }}$	0.84	2.17	2.798 (9)	132
$\mathrm{O} 6 \mathrm{C}-\mathrm{H} 6 \mathrm{OC} \cdots \mathrm{O} 10 \mathrm{~W}$	0.84	2.15	2.82 (1)	137
$\mathrm{O} 2 D-\mathrm{H} 2 \mathrm{O} D \cdots \mathrm{O} 3 C$	0.84	2.18	2.87 (1)	139
$\mathrm{O} 3 D-\mathrm{H} 3 \mathrm{O} D \cdots \mathrm{O} 2 E$	0.84	1.91	2.72 (1)	159
$\mathrm{O} 6 D-\mathrm{H} 6 \mathrm{O} D \cdots \mathrm{O} 2 W^{\text {ii }}$	0.84	2.31	2.67 (1)	106
$\mathrm{O} 2 E-\mathrm{H} 2 \mathrm{O} E \cdots \mathrm{O} 3 E$	0.84	2.42	2.85 (1)	113
$\mathrm{O} 3 E-\mathrm{H} 3 \mathrm{O} E \cdots \mathrm{O} 2 F$	0.84	2.02	2.72 (1)	141
$\mathrm{O} 6 E-\mathrm{H} 6 \mathrm{O} E \cdots \mathrm{O} 6 W^{\text {ii }}$	0.84	1.83	2.65 (2)	166
$\mathrm{O} 2 F-\mathrm{H} 2 \mathrm{O} F \cdots \mathrm{O} 8 W$	0.84	1.80	2.57 (2)	152
$\mathrm{O} 3 F-\mathrm{H} 3 \mathrm{O} F \cdots \mathrm{O} 2 G$	0.84	1.96	2.79 (1)	169
$\mathrm{O} 6 F-\mathrm{H} 6 \mathrm{O} F \cdots \mathrm{O} 3 G^{\text {iii }}$	0.84	1.93	2.73 (1)	159
$\mathrm{O} 2 \mathrm{G}-\mathrm{H} 2 \mathrm{O} G \cdots \mathrm{O} C^{\mathrm{Ci}}$	0.84	2.57	3.24 (1)	137
$\mathrm{O} 3 G-\mathrm{H} 3 \mathrm{O} G \cdots \mathrm{O} 6 C^{\mathrm{ii}}$	0.84	2.20	2.75 (1)	123
$\mathrm{O} 6 \mathrm{G}-\mathrm{H} 6 \mathrm{OG} \cdots \mathrm{O} 4 W^{\text {iv }}$	0.84	1.98	2.77 (1)	158
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} F$	0.85	2.26	3.10 (3)	173
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O} 2 D^{v}$	0.84	2.30	3.10 (3)	160
$\mathrm{O} 2 W-\mathrm{H} 3 W \cdots \mathrm{O} 3 A^{\text {vi }}$	0.84	1.86	2.64 (1)	154
$\mathrm{O} 2 W-\mathrm{H} 4 W \cdots \mathrm{O} 10 W^{\text {vii }}$	0.84	2.11	2.94 (1)	171
O3W-H5W \cdots O6 $F^{\text {viii }}$	0.84	1.99	2.76 (1)	153
O3W-H6W \cdots O6E ${ }^{\text {i }}$	0.84	2.43	3.24 (2)	161
$\mathrm{O} 4 W-\mathrm{H} 7 W \cdots \mathrm{O} 3 W$	0.84	1.97	2.78 (1)	161
O4W-H8W . . $\mathrm{O} 5 W$	0.84	1.91	2.73 (2)	167
O5W-H9W . . $\mathrm{O}^{\text {5 }}{ }^{\text {vii }}$	0.84	2.32	3.09 (1)	151
O5W-H9W . . O6 $D^{\text {vii }}$	0.84	2.40	3.05 (2)	135
O5W-H10W . . $\mathrm{O}^{\text {3 }}{ }^{\text {i }}$	0.84	2.10	2.81 (2)	143
$\mathrm{O} 6 W-\mathrm{H} 11 . W \cdots \mathrm{O} 3 D^{\text {ix }}$	0.84	2.31	2.84 (2)	121
$\mathrm{O} 6 W-\mathrm{H} 12 W \cdots \mathrm{O} 2 A^{\text {vi }}$	0.84	2.20	2.89 (2)	139
$\mathrm{O} 7 W-\mathrm{H} 13 W \cdots \mathrm{O} 2 G^{\mathrm{x}}$	0.84	1.88	2.69 (1)	161
O7W-H14W . . O11 W	0.84	2.25	2.79 (3)	123
$\mathrm{O} 8 W-\mathrm{H} 15 W \ldots \mathrm{O} 3 C^{\text {v }}$	0.85	2.14	2.90 (2)	149
O8 W-H16W . ${ }^{\text {W }}$ O $1 W$	0.84	2.18	2.64 (3)	114
$\mathrm{O} 9 W-\mathrm{H} 17 W \cdots \mathrm{O} 1 W^{\mathrm{x}}$	0.85	2.18	3.03 (4)	178
O9 W-H18W . . $\mathrm{O} 11 W^{\text {x }}$	0.85	2.17	2.64 (4)	115
$\mathrm{O} 10 \mathrm{~W}-\mathrm{H} 19 \mathrm{~W} \ldots \mathrm{O} 6 \mathrm{C}$	0.84	2.30	2.82 (1)	121
O10W-H20W ..O33 ${ }^{\text {xi }}$	0.84	1.95	2.76 (1)	159
$\mathrm{O} 11 W-\mathrm{H} 21 W \cdots \mathrm{O} 7 W$	0.86	2.05	2.79 (3)	145
$\mathrm{O} 11 W-\mathrm{H} 22 W \cdots \mathrm{O} 9 W^{\text {xii }}$	0.85	1.97	2.64 (4)	134
$\mathrm{O} 12 \mathrm{~W}-\mathrm{H} 23 W \cdots \mathrm{O} 7 W$	0.84	2.15	2.85 (4)	141
$\mathrm{O} 12 W-\mathrm{H} 24 W \cdots \mathrm{O} 1 W^{\text {x }}$	0.84	1.99	2.58 (3)	126
O13W-H25W...O12W	0.84	2.54	3.02 (4)	117
O13W-H25W...O11 W	0.84	2.62	3.26 (4)	134
O13W-H26W . . O5 $W^{\text {ii }}$	0.83	1.86	2.67 (4)	163
$\mathrm{O} 14 W-\mathrm{H} 27 W \cdots \mathrm{O} 3 F^{\mathrm{x}}$	0.86	2.25	2.98 (4)	142
$\mathrm{O} 14 W-\mathrm{H} 28 W \cdots \mathrm{O} 2 D^{\text {xiii }}$	0.85	1.84	2.61 (4)	151

Symmetry codes: (i) $x-\frac{1}{2},-\frac{1}{2}-y,-z$; (ii) $\frac{1}{2}+x,-\frac{1}{2}-y,-z$; (iii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iv) $-\frac{1}{2}-x,-1-y, \frac{1}{2}+z$; (v) $\frac{1}{2}-x,-y, \frac{1}{2}+z$; (vi) $x-\frac{1}{2},-\frac{3}{2}-y,-z$; (vii) $x, y-1, z$; (viii) $-\frac{1}{2}-x,-1-y, z-\frac{1}{2}$; (ix) $x-1, y-1, z$; (x) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (xi) $x, 1+y, z$; (xii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z ;$ (xiii) $\frac{1}{2}+x, \frac{1}{2}-y,-z$.

H atoms were treated as riding atoms. The positions of the H atoms of the water molecules were calculated with the program HYDROGEN (Nardelli, 1999) and included in the refinement with constrained geometry. A disorder of the phenyl ring was resolved by two sets of atomic coordinates and isotropic refinement.

organic papers

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-R E D$ (Stoe \& Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and HYDROGEN (Nardelli, 1999); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97 and IUCr SHELXL97 template.

We thank Professor M. Nardelli, University of Parma, for providing H -atom positions for the water molecules, calculated with the program $H Y D R O G E N$. We also thank T. Fässler, E.-Zintl-Institut, TU Darmstadt, for diffractometer time, S. Foro for technical assistance and the Fonds der Chemischen Industrie for partial funding.

References

Charpin, P., Nicolis, I., de Rango, C. \& Coleman, A. W. (1990). Acta Cryst. A46, C-169-C-174.

Fujita, K., Matsunaga, A., Imoto, T., Hirotsu, K., Kamitori, S. \& Higuchi, T. (1985). J. Am. Chem. Soc. 107, 1790-1791.

Fujita, K. (2003). In preparation.
Harata, K. (1996). Comprehensive Supramolecular Chemistry, Vol. 3, Cyclodextrins edited by J. L. Atwood, J. E. Davies and D. D. Nicol, pp. 279-304. Oxford: Pergamon Press.
Harata, K. (1998). Chem. Rev. 92, 1820-1822.
Harata, K., Trinadha Rao, C., Pitha, J., Fukunaga, K. \& Uekama, K. (1991). Carbohydr. Res. 222, 37-45.
Hirotsu, K., Higuchi, T., Fujita, K., Ueda, T., Shinoda, A., Imoto, T. \& Tabushi, I. (1982). J. Org. Chem. 47, 1143-1144.

Kamitori, S., Hirotsu, K., Higuchi, T., Fujita, K., Yamamura, H., Imoto, T. \& Tabushi, I. (1987). J. Chem. Soc. Perkin Trans. pp. 7-17.
Mentzafos, D., Terzis, A., Coleman, A. W. \& de Rango, C. (1996). Carbohydr. Res. 282, 125-135.
Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
Saenger, W. (1984). Inclusion Compounds, Vol. 2, edited by J. L. Atwood, K. E. Davies and D. D. MacNicol, pp. 231-259. London: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1999). PLATON. Version of October 1999. Utrecht University, The Netherlands.
Stoe \& Cie (2001). X - $A R E A$ and $X-R E D$. Stoe \& Cie, Darmstadt, Germany.

